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ABSTRACT 
 
The central thesis of this paper is that contemporary theoretical physics is grounded in 
philosophical presuppositions that make it difficult to effectively address the problems of 
subject-object interaction and discontinuity inherent to quantum gravity. The core 
objectivist assumption implicit in relativity theory and quantum mechanics is uncovered 
and we see that, in string theory, this assumption leads into contradiction. To address this 
challenge, a new philosophical foundation is proposed based on the phenomenology of 
Maurice Merleau-Ponty and Martin Heidegger. Then, through the application of 
qualitative topology and hypernumbers, phenomenological ideas about space, time, and 
dimension are brought into focus so as to provide specific solutions to the problems of 
force-field generation and unification. The phenomenological string theory that results 
speaks to the inconclusiveness of conventional string theory and resolves its core 
contradiction. 
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dimension; subjectivity and objectivity 
 
 
1. INTRODUCTION 

 
Over two thousand years ago, Plato laid down a tripartite formula that would tacitly be 
incorporated into the foundations of modern science, and into Western culture at large. In 
a key passage of the Timaeus, he states: “we must make a threefold distinction and think 
of that which becomes, that in which it becomes, and the model which it resembles”(1) (p. 
69). The first term refers to any particular object that is discernible through the senses. 
Plato speaks of the second term—”that in which [an object] becomes”—as the 
“receptacle,” describing it as the vessel that contains the changing forms or objects 
without itself changing (p. 69). A little later, he characterizes this receptacle as space (pp. 
71–72). Finally, the “model” for the transitory object is the “eternal object,” the 
changeless form or archetype. This perfect form is eidos, a rational idea or ordering 
principle in the mind of the Demiurge. Using his archetypal thoughts as his blueprints, 
                                                
1 This article is published in Foundations of Physics, 2008, 38 (6), 556–82. The original publication is 
available at www.springerlink.com; information for citation by page number is also available from the 
author. The article is based on my 2008 book, The Self-Evolving Cosmos, appearing in the Series on Knots 
and Everything of World Scientific Publishing Company.  
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the Divine Creator fashions an orderly world of particular objects and events. The third 
term brings in the element of subjectivity. Though the subject is divinely personified in 
the Timaeus, centuries later, with the Renaissance and the philosophy of René Descartes, 
subjectivity took on a more secular and general character. According to Descartes, 
whereas the object is res extensa, a thing extended in space, the subject is res cogitans, a 
“thinking thing” entirely without spatial extension. The threefold template thus 
adumbrated by Plato and carried forward in succeeding centuries is that of object-in-
space-before-subject.(2, 3, 4) The object is what is experienced, the subject is the 
transcendent perspective from which the experience is had, and space is the continuous 
medium through which the experience occurs. The relationship among these three terms 
is that of categorical division. 
 By the time the Renaissance was over, the tripartite classical formula was firmly 
entrenched in human affairs and had assumed the status of a self-evident intuition. All 
human perception was now generally organized in terms objects appearing in space 
before the gaze of detached subjects.2 The formula is clearly in evidence in the domain of 
scientific analysis, where Descartes’ philosophy is transposed into Cartesian mathematics 
via his system of coordinates. To see exactly how the formula applies, let us focus on a 
feature implicit in Plato’s original account: while the object is transitory, the subject and 
the space in which it operates are not. This finds expression in all graphed equations. 
Consider the simple example of the equation for a parabola. 
 

 
Figure 1. Graph of y = x2, the equation for a parabola 

In the graph of the equation (Fig. 1), x and y are variables, terms whose specific values 
change from point to point in the xy coordinate system. The variables correspond to the 
object term of the tripartite schema while the coordinate system itself constitutes the 
invariant spatial framework in which the objects are embedded. The third term of the 

                                                
2 Compare this with the mode of experience prevailing prior to the Renaissance, as intimated by 
philosopher Owen Barfield: “the world was more like a garment men [and women] wore about them than a 
stage on which they moved….Compared with us, they felt themselves and the objects around them and the 
words that expressed those objects, immersed together in something like a clear lake of…‘meaning’”(5) (p. 
95). 
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classical formula, viz. the subject, can also be located in the graph, at least indirectly. At 
the center of the xy coordinate system is the 0,0 origin. The origin of the function space 
plays a unique role. Representing the locus at which analysis or observation begins, 0,0 
serves, in effect, as the surrogate for the subject’s “eyes,” for the fixed point of view from 
which empirical observations are made or analyses carried out (see Ref. 2, Chapter 1). 
 There is of course another key feature of the equation. By definition, the variables 
of the equation undergo change, but the relationship between these variables does not. 
The equation thus expresses what remains invariant when particular values in the 
coordinate system are transformed. The invariance of the equation mediates between the 
variability of the particular objects and the invariance of the subject and its space. We 
may say that the analytical subject brings order to the objects it encounters in space by 
imposing abstract invariance upon their concrete variability. Note that the equation’s 
invariance clearly depends on the continuity of the functional space in which the 
relationship between variables is graphed. Were there a breach in the continuum, at this 
singular point the relationship would be abrogated and the equation would assume a 
nonfinite value. So whatever transformations of object-variables may occur within the 
spatial container, for the relationships between variables to be rendered invariant, the 
container itself must be invariant; it must stay intact, retain its continuity. 
 Though physics has been revolutionized since the days of Descartes, at bottom the 
old formula continues to operate. While the Michelson-Morley experiment indicated that 
Maxwell’s equations for electromagnetism could not be shown to be invariant with 
respect to the classical dimensions of space and time, Einstein soon stepped in to 
demonstrate that the invariance of the equations could be established within a new and 
integrated framework of space-time. In special relativity, the equations for 
electromagnetic interaction remain invariant under global (Lorentzian) transformations of 
four-dimensional space-time coordinates; in general relativity, the equations for 
gravitational interaction are invariant under local (Riemannian) transformations of space-
time coordinates. Generally speaking then, relativity theory accounts for physical 
interactions by allowing the old space and time to vary within a new, more abstract 
context of changeless space-time. 
 As for the relationship between subject and object, it is instructive to compare 
pre-Einsteinian and Einsteinian cases. In the former, it was possible to assume a universal 
observer (a “Laplacean demon”). All objective events occurring in three-dimensional 
space were cast before the gaze of this idealized subject. What Einstein was able to 
demonstrate is that—when it comes to phenomena whose velocities approach the velocity 
of light—the local space and time of the concrete observer can no longer be discounted. 
Of course, Einstein did not simply accept the intrinsic variability of concrete observation. 
In his revision of classical physics, concrete observation itself is explicitly included in the 
account of nature by making this subjectivity into a new object, one whose 
transformations are invariant in a higher-dimensional context. So, with Einstein, the 
“objects” under scrutiny are now observational events transpiring in four-dimensional 
space-time. Whereas three-dimensional events are concretely observable, the fourth 
dimension of Einsteinian relativity is an abstraction. The higher-order Einsteinian 
observer of these four-dimensional acts of observation is therefore a further step removed 
from concrete reality than was his Cartesian predecessor. Nevertheless, in both cases, the 
traditional stance is strictly maintained. In both, we have object-in-space-before-subject. 
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 But doesn’t the old formula break down in the other major revolution of modern 
physics? Does not the core discontinuity and accompanying subject-object interaction of 
quantum mechanics fly in the face of classical intuition? In the Copenhagen 
Interpretation of QM, a pragmatic approach is taken to this. No doubt the discontinuity 
lying at the heart of quantum theory entails a built-in limitation to the precision of 
objective measurement, yet uncertainty effects are readily manageable via probabilistic 
analysis as long as the phenomena under study are scaled well above the Planck length 
(10-35 meter). With this condition met, the classical formula can continue to operate as the 
default assumption. However, beginning in the last quarter of the twentieth century, the 
condition could no longer be met. 

Before the 1970s, quantum physical research focused on the study of non-
gravitational forces (strong, weak, and electromagnetic) whose scales of operation 
exceeded the Planck length by a considerable margin. But as research progressed, 
physicists became more determined to arrive at a unified description of the seemingly 
diverse forces. Generally speaking, contemporary field theory associates the unification 
of nature’s forces with a hotter, denser, microscopically scaled universe. The greater the 
number of forces to be unified, the higher the unification energy and the smaller the scale 
of magnitude at which the forces operate. In the 1970s, with electromagnetic and weak 
nuclear forces having been unified and advances made toward a grand unification of the 
three non-gravitational forces, physicists turned their attention to gravity. Now, in 
seeking to combine all four forces of nature in a single account, researchers could no 
longer avoid the ultra-microscopic Planck scale wherein uncertainty becomes 
uncontrollable and probabilistic analysis breaks down. 

I venture to say that little significant progress has been made in the thirty years 
since the problem of quantum gravity first gained serious attention. To be sure, ambitious 
projects have been undertaken in this regard, most notably, string theory. This has been 
the dominant approach, generating prodigious amounts of mathematical research and 
much excitement in the theoretical physics community. I have offered a detailed critique 
of string theory elsewhere,(2, 4) and some of my own objections are reflected in two recent 
books on the subject.(6, 7) At present I will limit myself to addressing two major problems 
with the theory—one real and the other apparent. 
 According to string theory, the fundamental constituents of the physical universe 
are not zero-dimensional point particles as previously supposed (in the standard model of 
unification), but one-dimensional strings. The positing of fundamental vibrating strings is 
not motivated by empirical observation, nor is it based on positive theoretical insight as 
much as on a negative consideration. Whereas the supposition of vanishingly small point 
particles leads one to probe below the Planck length into the forbidden zone of 
unmanageable energies and nonsensical equations, the assumption of string-like elements 
whose finite extension is no smaller than the Planck length allows one to avoid such a 
pitfall. But while the general equations of string theory are expressly designed to 
eliminate the ambiguities of the trans-Planckian world, ambiguity is carried forward 
epistemically, making its presence felt in the vast multiplicity of possible solutions to 
those equations, with no provision of a guiding principle by means of which the field of 
possibilities can be reduced. 
 Beyond this problem, an apparent contradiction lies at the heart of string theory. 
We are going to see that, while this inconsistency at first may seem only to hammer 
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another nail into string theory’s coffin, in fact it may point toward the theory’s 
redemption, albeit in a very different form. 
 
2. APPARENT SELF-CONTRADICTION OF STRING THEORY AND 
ITS PHILOSOPHICAL IMPLICATIONS 
 
Brian Greene emphasizes that “the spatially extended nature of a string is the crucial new 
element allowing for a single harmonious framework incorporating both [gravitational 
and quantum mechanical] theories”(8) (p. 136). But does the notion of a fundamental 
particle with finite extension make sense? 
 “Strings are truly fundamental” says Greene, “they are ‘atoms,’ uncuttable 
constituents” of nature. So, “even though strings have spatial extent, the question of their 
composition is without any content” (8) (p. 141) Is there not a contradiction here? For—at 
least according to the classical concept of the continuum not explicitly challenged by 
string theory, to be an object extended in space is to be cuttable, in fact, infinitely 
divisible (see Refs. 2 and 4). How then could a string be a fundamental particle, an 
indivisible ingredient of nature, when it is spatially extended, thus divisible?! Let us look 
more closely at why string theory is led into such a contradiction for conventional 
thinking. 
 Within the classical framework of object-in-space-before-subject, the idea of an 
indivisible, point-like atom or particle is indispensable. In order for the subject to analyze 
effectively an object in space, s/he must be able to determine what the object is “made 
of,” what its basic constituents are. There is a categorical difference between the atomic 
constituents of an object and the object itself. That is because, by definition, the “atoms” 
of which an object is composed, being indivisible, are not themselves open to analysis. 
The idea is not to say what they are made of; rather, they are the means by which the 
analysis of the object is performed. Therefore, the point-like elementary particles, instead 
of belonging with the object term of the classical formula, in fact belong with the subject 
term. The fundamental particle to which an object is reduced is the element upon which 
the subject’s analysis of that object is built. 

The standard model of unification maintains the classical assumption of point 
particles by adopting the attitude of positivistic pragmatism found in the Copenhagen 
Interpretation. Owing to the irreducible uncertainty inherent in Planck’s constant, it is 
true that, the closer we come to the point-like atomic origin of observation and analysis, 
the fuzzier that origin becomes. Yet, in non-gravitational quantum mechanics, the fuzzing 
out of the origin is tolerable, since the uncertainty can be managed through probabilistic 
approximation. Because the calculations work quite well, says the Copenhagen 
Interpretation, there is no need to trouble ourselves with the meaning of the underlying 
uncertainty. What we don’t know isn’t hurting us in the practical activity of science that 
we engage in; therefore, we don’t have to think about it. 
 For its part, string theory would also hope to effectively adopt a positivistic 
stance: we can’t know what goes on below the fundamental Planck-scaled strings so we 
are entitled to ignore it. However, whereas the non-gravitational approach can afford its 
positivism, it seems that string theory cannot, since its positivism must be bought at the 
price of self-contradiction. 
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 Positivism becomes exorbitantly expensive when gravitation must be included in 
the unified account of nature. Given the colossal ultra-microscopic energies required for 
this when point particles are assumed, the Hilbert spaces used in probabilistic analysis 
collapse, with finite probability values no longer being assignable to terms that describe 
the physical states of particles. String theory’s attempt to circumvent this problem and 
maintain positivism as a viable approach leads to the apparent contradiction we have 
discussed: an elementary particle with finite extension—that is, a point particle that is not 
a point particle. The particle cannot be a point if the ultra-microscopic infinities are to be 
avoided. And yet, the particle must be point-like, it must be indivisible, if an “objective” 
analysis is to be performed. For, if the particle is not elementary, if it does not have an 
unextended atomic character, analytical activity cannot be centered definitively in a point 
origin. 
 The apparent contradiction in string theory may be seen in terms of subject and 
object. Until the last quarter of the twentieth century, physics had done its utmost to 
suppress the fusion of subject and object intimated by QM’s “problem of measurement.” 
The standard model of unification had still been able to assume that the fundamental 
particle is simply unextended; therefore, the separation of subject and object could 
continue to be upheld, at least in probabilistic approximation: the point particle is the 
origin of the subject, and the extended entities that are observed and analyzed by the 
subject are its objects. Then, around 1975, when the need to deal with quantum gravity 
became a pressing issue, string theory entered the picture with its “extended atom.” 
Unlike the point particle of standard unification theory, the string evidently must be both 
indivisible and spatially extended—in effect, both subject and object. It is this 
implication that subverts the posture of object-in-space-before-subject that physics has 
long sought to maintain in its idealized quest for unification. 
 
Lee Smolin opens his recent book, The Trouble With Physics, by observing physics’ 
current impasse: “For more than two centuries, until the present period [beginning 
roughly around 1975], our understanding of the laws of nature expanded rapidly. But 
today, despite our best efforts, what we know for certain about these laws is no more than 
what we knew back in the 1970s”(6) (p. viii). Smolin winds up calling for a different style 
of doing physics than what has been practiced since the advent of string theory. He 
advocates a “more reflective, risky, and philosophical style” (p. 294) that confronts “the 
deep philosophical and foundational issues in physics” (p. 290). 
 I applaud Smolin’s call for a more philosophically-oriented physics. And I am 
proposing that the recent stalemate in physics suggests it will no longer be possible for us 
to rely on the old philosophical foundation. With the coming to prominence of the 
quantum gravity issue, theoretical physics evidently has reached an unprecedented 
watershed. The problems confronted by string theory, and by quantum gravity in general, 
are not merely theoretical ones that can be resolved within the extant philosophical 
framework of object-in-space-before-subject. Rather, the difficulty lies squarely with that 
framework itself. The trans-Planckian dissolution of spatial continuity and fusion of 
subject and object strike at the very heart of the ancient formula. I therefore venture to 
say that any new theory presupposing said formula will fail to bring the unification that is 
sought. But if the long-dominant tradition of philosophy is not equal to the task of 
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effectively grounding an understanding of quantum gravity, is there any alternative 
philosophical foundation that can serve in this capacity? I believe the answer is yes. 
 
3. PHENOMENOLOGICAL PHILOSOPHY 
 
Science recognizes its pre-scientific roots. It rightly calls attention to the ignorance and 
confusion that prevailed before it came onto the scene; it correctly notes the benefits that 
were reaped with its emergence. But science also tends to believe that it has transcended 
history. While it readily acknowledges that its particular methods and findings are many 
and varied, that they are always subject to revision and refinement, science generally 
takes for granted that its posture of “objectivity” is beyond reproach. The assumption is 
that this detached stance gives us privileged access to the truth, and that it does so once 
and for all, exempting it from the possibility that there could be any constructive 
modification of it in the future. The uncritical acceptance of the “objective” posture 
(which is of course rooted in the ancient formula we have discussed) has made it difficult 
for science to address the problem of quantum gravity, since this problem—in intimating 
the trans-Planckian inseparability of subject and object—raises doubts about that posture. 
When confronted with the challenge of quantum gravity, most working scientists are not 
likely even to give serious attention to the question of science’s basic epistemic position. 
And although a few courageous physicists like Lee Smolin have called for revolutionary 
new theories based on philosophical thinking, the default setting of philosophy remains 
operative, that of object-in-space-before-subject. What I am proposing is that meeting the 
challenge of quantum gravity requires that physics be regrounded in a new philosophy, 
one that can accommodate the intimate interplay of subject and object. I hasten to add 
that changing philosophy’s “setting” in the way I am going to suggest will not mean 
losing contact with objective reality; on the contrary, it will mean that the 
analyst/observer, in relinquishing the stance of detached anonymity, will become more 
closely engaged with the down-to-earth facts of reality than ever before. 
 
3.1. Phenomenology 
 
Over the past century, the classical tradition has been questioned by the proponents of the 
philosophical initiative known as existential phenomenology. I will briefly describe the 
general features of this approach and its historical influence on physics, and will then 
focus on a specific concept in phenomenology that has an immediate bearing on the 
matter before us. We shall see that the idea of depth advanced by Maurice Merleau-
Ponty(9) responds to the challenge of quantum gravity by offering a new understanding of 
object, subject, and space. 
 The phenomenological movement is rooted in the nineteenth century existentialist 
writings of thinkers like Kierkegaard, Nietzsche, and Dostoevsky. It takes its 
contemporary form through the work of its principal figures: Edmund Husserl, Martin 
Heidegger, and Maurice Merleau-Ponty. In terms of the present article, phenomenology 
can be seen most essentially as a critique of the classical trichotomy of object-in-space-
before-subject. To the phenomenologist, the activities of the detached Cartesian subject 
are idealizing objectifications of the world that conceal the concrete reality of the 
lifeworld.(10) Obscured by the lofty abstractions of European science, this earthy realm of 
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lived experience is inhabited by subjects that are not anonymous, that do not fly above 
the world, exerting their influence from afar. In the lifeworld, the subject is a fully 
situated, fully-fledged participant engaging in transactions so intimately entangling that it 
can no longer rightly be taken as separated either from its objects, or from the worldly 
context itself. 

It is clear that all three terms of the classical formulation are affected by the 
phenomenological move. Again, on the classical account, the object is what is 
experienced, the subject is the transcendent perspective from which the experience is had, 
and space is the continuous medium through which the experience occurs. In this 
approach, objects are taken as simply external to each other and as appearing within a 
spatial continuum of sheer externality—space’s infinite divisibility, or, in Heidegger’s 
words, the “‘outside-of-one-another’ of the multiplicity of points”(11) (p. 481). The agents 
operating upon the objects entail a third mode of external relationship, acting as they do 
from a transcendent vantage point beyond the objects in space. It is this classical 
privileging of external relations that is counteracted in the phenomenological approach. 
Notwithstanding the Platonic/Cartesian idealization of the world, in the underlying 
lifeworld there is no object with boundaries so sharply defined that it is closed off 
completely from other objects. The lifeworld is characterized instead by the 
transpermeation of objects, by their mutual interpenetration, by the “reciprocal insertion 
and intertwining of one in the other,” as Merleau-Ponty put it(12) (p. 138). With objects 
thus related by way of mutual containment, no separate container is required to mediate 
their relations, as would have to be the case with externally related objects. 
Phenomenological understanding supersedes the classical relationship of container and 
contained. Objects no longer are to be thought of as contained in space like things in a 
box, for, in containing each other, they contain themselves. At the same time, it must also 
be understood that, in the lifeworld, there can be no peremptory division of object and 
subject. The lifeworld subject, far from being the disengaged, high-flying deus ex 
machina of Descartes, finds itself down among the objects, is “one of the visibles”(12) (p. 
135), is itself always an object to some other subject, so that the simple distinction 
between subject and object is confounded and “we no longer know which sees and which 
is seen” (p. 139). The phenomenological grounding of the subject is thus indicative of the 
close interplay of subject and object in the lifeworld. Generally speaking then, what the 
move from classical thinking to phenomenology essentially entails is an internalization of 
the relations among subject, object, and space. 

Despite the continuing dominance of Cartesianism in contemporary physics, it is 
interesting to note that the phenomenology of Husserl and Heidegger did have an impact 
on some of the founders of quantum theory. Eugene Wigner, for example, had 
encountered Husserl at the University of Göttingen and knew Heidegger through Michael 
Polanyi, Wigner’s colleague and mentor; these influences were reflected in Wigner’s 
approach to physics (see Ref. 13). Another example is Werner Heisenberg’s 
correspondence with Heidegger, which led Heisenberg to contribute an article on particle 
physics to a festschrift for Heidegger.(14) The connection between phenomenology and 
physics is further evidenced in the work of scientists and philosophers such as Hermann 
Weyl,(15) Joseph Kockelmans,(16) and Pierre Kerszberg.(17) A pivotal figure is Patrick 
Heelan,(18) who studied with Wigner and Heisenberg, and has pioneered efforts to apply 
phenomenological investigation to the philosophy of space, and of quantum mechanics. 
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Now, the beginnings of a specific phenomenological response to the problem of 
quantum gravity can be found in the work of Merleau-Ponty.(9) In his concept of depth, 
he provides an account of dimensionality that permits us to understand the limitations of 
Cartesian space and to surpass them. I will describe Merleau-Ponty’s approach in the 
following section, then attempt to clarify it in the section after that. 
 
3.2. Depth: The Primary Dimension 
 
By way of introducing Merleau-Ponty’s depth dimension, let us consider once more the 
traditional dichotomy between objects contained in space and their spatial container, or, 
as Plato put it, between “that which becomes [and] that in which it becomes”(1) (p. 69). 
This approach to space ultimately devitalizes the world, renders it immobile, because, 
whatever changes may transpire in the objects that “become,” however they may be 
transformed, the containing space, the Platonic receptacle, itself does not change (p. 69). 
Indeed, for there to be change, there must be difference, contrast, opposition of some 
kind. But the point-elements that make up the classical continuum, rather than entailing 
opposition, involve mere juxtaposition. Being unextended and thus devoid of inner 
structure, the elements of space possess no gradations of depth, no shading, texture, or 
nuance, no contrasts or distinctions of any sort. Instead of expressing the interplay of 
shadow and light, space itself is all light, as it were. A condition of “total exposure” 
prevails for the point-elements of the continuum, since these elements, having no interior 
recesses, must be said to exist solely “on the outside.” All that could be said of the 
relations among such eviscerated beings is what Heidegger said: the points of classical 
space are “‘outside-of-one-another’.” So, rather than actively engaging each other as do 
the beings that are contained in space, the densely packed elements of the classical 
container sit inertly side by side, like identical beads on a string. 

As a matter of fact, even though the beings that dwell in such a space can be said 
to be “actively engaged,” the quality of their interaction is affected by the context in 
which they are embedded: since the continuum is constituted by sheer externality, the 
relations among its inhabitants must also be external. Classical dynamics are essentially 
mechanistic; instead of involving a full-fledged dialectic of opposition and identity 
wherein beings influence each other from core to core, influence is exerted in a more 
superficial fashion. According to David Bohm, the mechanistic order of influence is one 
in which entities “interact through forces that do not bring about any changes in their 
essential natures ... [they interact] only through some kind of external contact”(19) (p. 
173). We may say then that classical space contains dialectical process in such a way that 
it externalizes it, divesting it of its depth and vitality. 

In Merleau-Ponty’s phenomenological approach, we see that the classical space 
appearing to contain dialectical process actually originates from it. In his essay “Eye and 
Mind,” Merleau-Ponty emphasizes the “absolute positivity” of traditional Cartesian 
space(9) (p. 173). For Descartes, space simply is there; possessing no folds or nuances, it 
is the utterly explicit openness, the sheer positive extension that constitutes the field of 
strictly external relations wherein unambiguous measurements can be made. Classical 
space, says Merleau-Ponty, “remains absolutely in itself, everywhere equal to itself, 
homogeneous; its dimensions, for example, are interchangeable (p. 173).” He concludes 
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that, for Descartes, space is a purely “positive being, outside all points of view, beyond 
all latency and all depth, having no true thickness” (p. 174). 

Challenging the Cartesian view, Merleau-Ponty insists that the dialectical features 
of perceptual experience (perspectival opposition, gradations of depth, etc.) are not 
merely secondary to a space that itself is devoid of such features. He begins his own 
account of spatiality by exploring the paradoxical interplay of the visible and invisible, of 
difference and identity, that is characteristic of true depth: 

 
The enigma consists in the fact that I see things, each one in its place, precisely 
because they eclipse one another, and that they are rivals before my sight 
precisely because each one is in its own place. Their exteriority is known in their 
envelopment and their mutual dependence in their autonomy. Once depth is 
understood in this way, we can no longer call it a third dimension. In the first 
place, if it were a dimension, it would be the first one; there are forms and definite 
planes only if it is stipulated how far from me their different parts are. But a first 
dimension that contains all the others is no longer a dimension, at least in the 
ordinary sense of a certain relationship according to which we make 
measurements. Depth thus understood is, rather, the experience of the reversibility 
of dimensions, of a global ‘locality’—everything in the same place at the same 
time, a locality from which height, width, and depth [the classical dimensions] are 
abstracted.(9) (p. 180) 
 
Speaking in the same vein, Merleau-Ponty characterizes depth as “a single 

dimensionality, a polymorphous Being,” from which the Cartesian dimensions of linear 
extension derive, and “which justifies all [Cartesian dimensions] without being fully 
expressed by any” (p. 174). The dimension of depth is “both natal space and matrix of 
every other existing space” (p. 176). 

Merleau-Ponty goes on to observe that primal dimensionality must be understood 
as self-containing. This is illustrated through the visual space of Cézanne: “Cézanne 
knows already what cubism will repeat: that the external form, the envelope, is secondary 
and derived, that it is not that which causes a thing to take form, that this shell of space 
must be shattered” (p. 180). In breaking the “shell,” one disrupts the classical 
representation of objects-in-space. Now space is no longer taken in abstraction from its 
content, but in recognition of the unbroken flow from container to content. “We must 
seek space and its content as together,” says Merleau-Ponty (p. 180). It is in this sense of 
the internal mediation of container and content that Cézanne’s depth dimension is self-
containing. 

It is also clear that this primal dimension engages embodied subjectivity: the 
dimension of depth “goes toward things from, as starting point, this body to which I 
myself am fastened” (p. 173). In his comment that “there are forms and definite planes 
only if it is stipulated how far from me their different parts are” (p. 180; italics mine), 
Merleau-Ponty is conveying the same idea. And a little later, Merleau-Ponty says: 

 
The painter’s vision is not a view upon the outside, a merely “physical-optical” 
relation with the world. The world no longer stands before him through 
representation; rather, it is the painter to whom the things of the world give birth 
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by a sort of concentration or coming-to-itself of the visible. Ultimately the 
painting relates to nothing at all among experienced things unless it is first of all 
‘autofigurative.’...The spectacle is first of all a spectacle of itself before it is a 
spectacle of something outside of it. (p. 181) 
 

In this passage, the painting of which Merleau-Ponty speaks, in drawing upon the 
originary dimension of depth, draws in upon itself. Painting of this kind is not merely a 
signification of objects but a self-signification that surpasses the division between object 
and subject. 

In sum, the phenomenological dimension of depth as described by Merleau-Ponty 
is (1) the “first” dimension, inasmuch as it is the source of the Cartesian dimensions, 
which are idealizations of it; it is (2) a self-containing dimension, not merely a container 
for contents that are taken as separate from it; and it is (3) a dimension that leads back to 
and brings into play the actions of the lived subject, rather than serving as but a staging 
platform for the detached operations of an anonymous subject. In other words, depth 
constitutes the dimensional structure of the lifeworld, the primal world obscured by the 
abstractions of classical experience. In realizing depth, we go beyond the concept of 
space as but an inert container and come to understand it as an aspect of an indivisible 
cycle of action in which the “contained” and “uncontained”—object and subject—are 
integrally incorporated. 
 
4. TOPOLOGICAL PHENOMENOLOGY 
 
Merleau-Ponty’s concept of depth surpasses the ancient formula by internalizing the 
relations among object, space, and subject. Whereas the Platonic-Cartesian intuition of 
these ontological categories makes it impossible to come to grips with the discontinuity 
and intimate subject-object interaction of the trans-Planckian domain, depth-dimensional 
intuition is better attuned to the quantum gravitational realm. However, it is obvious that 
a great gap exists between the softly-focused phenomenological notion of depth and the 
more sharply defined concepts and phenomena of theoretical physics. The remainder of 
this paper is dedicated to closing this gap. 
 
The bridge I propose for joining seemingly distant shores is topological phenomenology 
(see Refs. 2, 3, and 4). To conventional thinking, topology is generally defined as the 
branch of mathematics that concerns itself with the properties of geometric figures that 
stay the same when the figures are stretched or deformed. In algebraic topology, 
structures from abstract algebra are employed to study topological spaces. A more 
concrete approach to topology is exemplified by the practical experiments of 
mathematician Stephen Barr.(20) In either case, however, the underlying philosophical 
default setting tacitly operates, with topological structures regarded strictly as objects 
under the scrutiny of a detached analyst. Yet, in Heidegger’s enigmatic invocation of a 
“topology of Being”(21) (p. 12), and in Merleau-Ponty’s reference to “topological space 
as…constitutive of life”(12) (p. 211), there is a first intimation of a phenomenologically-
based, non-objectifying topology. As a matter of fact, when Merleau-Ponty 
metaphorically describes this topological space as “the image of a being that…is older 
than everything and ‘of the first day’” (p. 210), we are reminded of the concept of 
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dimension he had outlined in his earlier work: the concept of depth.(9) Can we sharpen 
our focus on the depth dimension by going further with topology? A well-known 
topological curiosity appears especially promising in this regard: the Klein bottle. 
 Elsewhere, I have used the Klein bottle to address a variety of philosophical 
issues (22, 23, 24) (see also Refs. 2 and 3). For our present purpose, we begin with a simple 
illustration. 
 

 
Figure 2. Parts of the Klein bottle (after Ryan, Ref. 25, p. 98) 

 
 Figure 2 is my adaptation of communication theorist Paul Ryan’s linear schemata 
for the Klein bottle(25) (p. 98). According to Ryan, the three basic features of the Klein 
bottle are “part contained,” “part uncontained,” and “part containing.” Here we see how 
the part contained opens out (at the bottom of the figure) to form the perimeter of the 
container, and how this, in turn, passes over into the uncontained aspect (in the upper 
portion of Fig. 2). The three parts of this structure thus flow into one another in a 
continuous, self-containing movement that flies in the face of the classical trichotomy of 
contained, containing, and uncontained—symbolically, of object, space, and subject. But 
we can also see an aspect of discontinuity in the diagram. At the juncture where the part 
uncontained passes into the part contained, the structure must intersect itself. Would this 
not break the figure open, rendering it simply discontinuous? While this is indeed the case 
for a Klein bottle conceived as an object in ordinary space, the true Klein bottle actually 
enacts a dialectic of continuity and discontinuity, as will become clearer in further 
exploring this peculiar structure. We can say then that, in its highly schematic way, the 
one-dimensional diagram lays out symbolically the basic terms involved in the 
“continuously discontinuous” dialectic of depth. Depicted here is the process by which 
the three-dimensional object of the lifeworld, in the act of containing itself, is 
transformed into the subject. This blueprint for phenomenological interrelatedness gives 
us a graphic indication of how the mutually exclusive categories of classical thought are 
surpassed by a threefold relation of mutual inclusion. It is this relation that is expressed in 
the primal dimension of depth. 
 When Merleau-Ponty says that the “enigma [of depth] consists in the fact that I 
see things...precisely because they eclipse one another,” that “their exteriority is known in 
their envelopment,” he is saying, in effect, that the peremptory division between the 
inside and outside of things is superseded in the depth dimension. Just this supersession is 
embodied by the Klein bottle. What makes this topological surface so surprising from the 
classical standpoint is its property of one-sidedness. More commonplace topological 
figures such as the sphere and the torus are two-sided; their opposing sides can be 
identified in a straightforward, unambiguous fashion. Therefore, they meet the classical 
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expectation of being closed structures, structures whose interior regions (“parts 
contained”) remain interior. In the contrasting case of the Klein bottle, inside and outside 
are freely reversible. Thus, while the Klein bottle is not simply an open structure, neither 
is it simply closed, as are the sphere and the torus. In studying the properties of the Klein 
bottle, we are led to a conclusion that is paradoxical from the classical viewpoint: this 
structure is both open and closed. The Klein bottle therefore helps to convey something 
of the sense of dimensional depth that is lost to us when the fluid lifeworld relationships 
between inside and outside, closure and openness, continuity and discontinuity, are 
overshadowed in the Cartesian experience of their categorical separation. 
 However, must the self-containing one-sidedness of the Klein bottle be seen as 
involving the spatial container? Granting the Klein bottle’s symbolic value, could we not 
view its inside-out flow from “part contained” to “part containing” merely as a 
characteristic of an object that itself is simply “inside” of space, with space continuing to 
play the classical role of that which contains without being contained? In other words, 
despite its suggestive quality, does the Klein bottle not lend itself to classical idealization 
as a mere object-in-space just as much as any other structure? 
 A well-known example of a one-sided topological structure that indeed can be 
treated as simply contained in three-dimensional space is the Moebius strip. Although its 
opposing sides do flow into each other, this is classically interpretable as but a global 
property of the surface, a feature that depends on the way in which the surface is enclosed 
in space but one that has no bearing on the closure of space as such; that is, the 
topological structure of the Moebius, the particular way its boundaries are formed (one 
end of the strip must be twisted before joining it to the other), can be seen as unrelated to 
the sheer boundedness constituted by the structureless point elements of space itself. So, 
despite the one-sidedness of the Moebius strip, the three-dimensional space in which it is 
embedded can be taken as retaining its simple closure. The maintenance of a strict 
distinction between the global properties of a topological structure and the local 
structurelessness of its spatial context is mathematics’ way of upholding the underlying 
classical relation of object-in-space. Given that the Moebius strip does lend itself to 
drawing said categorical distinction, can we say the same of the Klein bottle? Although 
conventional mathematics answers this question in the affirmative, I will suggest the 
contrary. 
 The schematic representation of the Klein bottle provided by Figure 2 shows that 
it possesses the odd property of passing through itself. When we consider the actual 
construction of a Klein bottle in three-dimensional space (by joining one boundary circle 
of a cylinder to the other from the inside), we are confronted with the fact that no 
structure can penetrate itself without cutting a hole in its surface, an act that would render 
the model topologically imperfect (simply discontinuous). So the Klein bottle cannot be 
effectively assembled when one is limited to three dimensions. 
 Mathematicians observe that a form that penetrates itself in a given number of 
dimensions can be produced without cutting a hole if an added dimension is available. 
The point is imaginatively illustrated by Rudolf Rucker.(26) He asks us to picture a species 
of “Flatlanders” attempting to assemble a Moebius strip, which is a lower-dimensional 
analogue of the Klein bottle. Rucker shows that, since the reality of these creatures would 
be limited to two dimensions, when they would try to make an actual model of the 
Moebius, they would be forced to cut a hole in it. Of course, no such problem with 
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Moebius construction arises for us human beings, who have full access to three external 
dimensions. It is the making of the Klein bottle that is problematic for us, requiring as it 
would a fourth dimension. Try as we might we find no fourth dimension in which to 
execute this operation. 
 However, in contemporary mathematics, the fact that we cannot create a proper 
model of the Klein bottle in three-dimensional space is not seen as an obstacle. The 
modern mathematician does not limit him- or herself to the concrete reality of space but 
feels free to invoke any number of higher dimensions. Notice though, that in summoning 
into being these extra dimensions, the mathematician is extrapolating from the known 
three-dimensionality of the concrete world. This procedure of dimensional proliferation is 
an act of abstraction that presupposes that the nature of dimensionality itself is left 
unchanged. In the case of the Klein bottle, the “fourth dimension” required to complete 
its formation remains an extensive continuum, though this “higher space” is 
acknowledged as but a formal construct; the Klein bottle per se is regarded as an abstract 
mathematical object simply contained in this hyperspace (whereas the sphere, torus, and 
Moebius strip are relatively concrete mathematical objects, since tangibly perceptible 
models of them may be successfully fashioned in three dimensions). We see here how the 
conventional analysis of the Klein bottle unswervingly adheres to the classical 
formulation of object-in-space. Moreover, whether a mathematical object must be 
approached through hyperdimensional abstraction or it is concretizable, the 
mathematician’s attention is always directed outward toward an object, toward that which 
is cast before his or her subjectivity. This is the aspect of the classical stance that takes 
subjectivity as the detached position from which all objects are viewed (or, better 
perhaps, from which all is viewed as object); here, never is subjectivity as such opened to 
view. Thus the posture of contemporary mathematics is faithfully aligned with that of 
Plato and Descartes in whatever topic it may be addressing. Always, there is the 
mathematical object (a geometric form or algebraic function), the space in which the 
object is contained, and the seldom-acknowledged uncontained subjectivity of the 
mathematician who is carrying out the analysis. 
 Now, in his study of topology, Barr advised that we should not be intimidated by 
the “higher mathematician....We must not be put off because he is interested only in the 
higher abstractions: we have an equal right to be interested in the tangible”(20) (p. 20). 
The tangible fact about the Klein bottle that is glossed over in the higher abstractions of 
modern mathematics is its hole. Because the standard approach has always presupposed 
extensive continuity, it cannot come to terms with the inherent discontinuity of the Klein 
bottle created by its self-intersection. Therefore, all too quickly, “higher” mathematics 
circumvents this concrete hole by an act of abstraction in which the Klein bottle is treated 
as a properly closed object embedded in a hyper-dimensional continuum. Also implicit in 
the mainstream approach is the detached subjectivity of the mathematician before whom 
the object is cast. I suggest that, by staying with the hole, we may bring into question the 
classical intuition of object-in-space-before-subject. 
 Let us look more closely at the hole in the Klein bottle. This loss in continuity is 
necessary. One certainly could make a hole in the Moebius strip, torus, or any other 
object in three-dimensional space, but such discontinuities would not be necessary 
inasmuch as these objects could be properly assembled in space without rupturing them. 
It is clear that whether such objects are cut open or left intact, the closure of the space 
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containing them will not be brought into question; in rendering these objects 
discontinuous, we do not affect the assumption that the space in which they are 
embedded is simply continuous. With the Klein bottle it is different. Its discontinuity 
does speak to the supposed continuity of three-dimensional space itself, for the necessity 
of the hole in the bottle indicates that space is unable to contain the bottle the way 
ordinary objects appear containable. We know that if the Kleinian “object” is properly to 
be closed, assembled without merely tearing a hole in it, an “added dimension” is 
required. Thus, for the Klein bottle to be accommodated, it seems the three-dimensional 
continuum itself must in some way be opened up, its continuity opened to challenge. Of 
course, we could attempt to sidestep the challenge by a continuity-maintaining act of 
abstraction, as in the standard mathematical analysis of the Klein bottle. Assuming we do 
not employ this stratagem, what conclusion are we led to regarding the “higher” 
dimension that is required for the completion of the Klein bottle? If it is not an extensive 
continuum, what sort of dimension is it? I suggest that it is none other than the dimension 
of depth adumbrated by Merleau-Ponty. 
 Depth is not a “higher” dimension or an “extra” dimension; it is not a fourth 
dimension that transcends classical three-dimensionality. Rather—as the “first 
dimension”(9) (p. 180), depth constitutes the dynamic source of the Cartesian dimensions, 
their “natal space and matrix” (p. 176). Therefore, in realizing depth, we do not move 
away from classical experience but move back into its ground where we can gain a sense 
of the primordial process that first gives rise to it. The depth dimension does not complete 
the Klein bottle by adding anything to it. Rather, the Klein bottle reaches completion 
when we cease viewing it as an object-in-space and recognize it as the embodiment of 
depth. It is the Kleinian pattern of action (as schematically laid out in Fig. 2) that 
expresses the in-depth relations among object, space, and subject from which the old 
trichotomy is abstracted as an idealization. So it turns out that, far from the Klein bottle 
requiring a classical dimension for its completion, it is classical dimensionality that is 
completed by the Klein bottle, since—in its capacity as the embodiment of depth—the 
Klein bottle exposes the hitherto concealed ground of classical dimensionality. Here is 
the key to transforming our understanding of the Klein bottle so that we no longer view it 
as an imperfectly formed object in classical space but as the dynamic ground of that 
space: we must recognize that the hole in the bottle is a hole in classical space itself, a 
discontinuity that, when accepted dialectically instead of evaded, leads us beyond the 
concept of dimension as continuum to the idea of dimension as depth. 
 By way of summarizing the paradoxical features of the Klein bottle thus far 
considered, I refocus on the threefold disjunction implicit in the standard treatment of the 
Klein bottle: contained object, containing space, uncontained subject. (1) The contained 
constitutes the category of the bounded or finite, that of the immanent contents we reflect 
upon, whatever they may be. These include empirical facts and their generalizations, 
which may be given in the form of equations, invariances, or symmetries. (2) The 
containing space is the contextual boundedness serving as the means by which reflection 
occurs. (3) The uncontained or unbounded is the transcendent agent of reflection, namely, 
the subject. It is in adhering to this classical trichotomy that the Klein bottle is 
conventionally deemed a topological object embedded in “four-dimensional space.” But 
the actual nature of the Klein bottle suggests otherwise. The concrete necessity of its hole 
indicates that, in reality, this bottle is not a mere object, not simply enclosed in a 
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continuum as can be assumed of ordinary objects, and not opened to the view of a subject 
that itself is detached, unviewed (uncontained). Instead of being contained in space, the 
Klein bottle may be described as containing itself, thereby superseding the dichotomy of 
container and contained. Instead of being reflected upon by a subject that itself remains 
out of reach, we may say that the self-containing Kleinian object is self-reflexive: it flows 
back into the subject thereby disclosing—not a detached cogito, but the dimension of 
depth that constitutes the dialectical lifeworld. 
 
5. THE PHYSICAL SIGNIFICANCE OF THE KLEIN BOTTLE 
 
Having fleshed out Merleau-Ponty’s depth dimension via Kleinian topology, we are now 
prepared to consider the physical meaning of the phenomenologically constituted Klein 
bottle. The characteristics of Kleinian depth we have examined bring to mind the intimate 
subject-object interaction and discontinuity found at the core of quantum physics. I 
believe this makes it reasonable to entertain the idea that the Kleinian action structure 
embodies , the quantized action associated with the emission of radiant energy in the 
microworld. In point of fact, this connection is already implicit in the standard 
formulation of subatomic spin, though the relationship is well disguised. 
 Subatomic particles are endowed with internal angular momentum or spin. 
According to Roger Penrose,(27) spin is the “most obvious physical concept that one has 
to start with, where quantum mechanics says something is discrete” (p. 151). The 
fundamental quantized action of spin, indexed by /2, hardly takes the form of a simply 
continuous spinning in three-dimensional space. When Wolfgang Pauli sought to model 
quantum mechanical spin, he employed the mathematics of complex numbers, and, in 
particular, the “hypernumbers” developed by William Clifford in the nineteenth century 
(see Ref. 28). Mathematician David Applebaum observes that Clifford’s abstract 
algebraic research had been “motivated by geometry…particularly the problem of trying 
to generalize the properties of complex numbers so as to be able to describe rotations in 
three dimensions”(29) (p. 3). Pauli used the “simplest non-trivial example of a Clifford 
algebra” (p. 4) to derive three matrices, which yield the three components of electron 
spin: 
 

Sx = /2 (0    1    1    0) 
Sy = /2 (0   –i    i    0) 

  Sz = /2 (1    0    0    –1), 
 

where /2 is the basic unit of electron spin. In fact, /2 is taken as the basis for 
determining the spin of all subatomic particles. Fermions, which are typically matter 
particles like the electron and quark, have spin values that are odd-number multiples of 
/2 (such as 1/2, 3/2, 5/2, etc.). Bosons, which are typically force particles like the 
photon or gluon, entail spin values that are even-number multiples of /2 (such as 2/2, 
4/2, etc.). 
 Note that, while the Pauli spin matrices employ the hypernumber i, they are based 
on a form of hypernumber that actually goes beyond i. The mathematician Charles Musès 
called this number ε, defined as ε2 = +1, but ε ≠ ± 1. Musès associated each of Pauli’s 
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three matrices with a different variety of ε (Ref. 30, p. 213). But Musès was not satisfied 
with a merely algebraic expression of ε. Emphasizing the intimate relationship between 
algebra and geometry, he asserted that “geometry…can lead us to a deeper 
understanding” than the mere “brute facts” of algebra: 

 
The hypernumber i needs only a plane for visualization because, as it is multiplied 
by itself, it rotates in a plane as does a unit radius when a circle is drawn. But the 
hypernumber ε involves reflection….It is clear that in order to turn a right hand 
into its reflected version (a left hand), more is required than sliding or rotation in 
tri-dimensional space. It can be shown that a right hand would be changed into a 
left hand if it were rotated 180° out of our triple dimensional space into four-
dimensional space, and then back into our space again….Therefore, because ε 
deals with reflections and not only with simple rotations as does i, its operations 
demand geometrically a four-dimensional space, whereas the simple, rotational 
character of i’s operations demands only two-dimensional space.(28) (p. 77) 

 
 Musès further observes that when the “kinematic geometry of epsilon” is applied 
to physics, it becomes “clear that [electron] spin is more like successive rotation through 
a four-dimensional space and then back into ours, rather than an ordinary, three-
dimensional spinning. As of this writing, it is realized among physicists that such ‘spin’ is 
not ordinary; but ε clarifies what it is” (p. 77). 
 Elsewhere(22) (p. 104), I related the kinematic geometry of ε to the topology of the 
Klein bottle. Like ε rotation, Kleinian action can also be seen as involving a “successive 
rotation through a four-dimensional space and then back into ours”; moreover, the Klein 
bottle possesses the property of reflection that transforms left into right and vice versa. I 
would maintain, of course, that the “extra dimension” into which Kleinian action flows is 
in fact no objectified fourth dimension but the sub-objective dimension of depth. This is 
the crucial distinction between the proposed phenomenological approach to the 
foundations of physics and the still-prevalent Cartesian one. 
 It might not be too much to say that all microworld dynamics arise from spin of 
the Kleinian kind (ε/2). The fundamental role of subatomic spin is brought out by F. A. 
M. Frescura and Basil Hiley.(31) These theorists associate spin with “the pre-geometric 
structure of the holomovement” (p. 27)—the dynamic substrate that Bohm portrayed as 
underlying space, time, and quantum mechanics.(19)3 The significance of spin is also 
highlighted in an article by David Hestenes entitled, “Quantum Mechanics from Self-
Interaction.”(32) According to Hestenes, electromagnetic self-interaction is the core 
element of quantum mechanics, and spin is its “most characteristic feature” (p. 68). In 
emphasizing the central importance of spin, Hestenes indicates that the uncertainty 
relations (ΔxΔpx = /2) found in every aspect of quantum theory derive from spin: “We 
now see the uncertainty relations as consequences of a zero-point motion with a fixed 
zero-point angular momentum, the spin of the electron. This explains why the limiting 
constant /2 in the uncertainty relations is exactly equal to the magnitude of the electron 
spin” (p. 73). 
                                                
3 The notion of an underlying pattern of movement more primordial than space and time and giving rise to 
them is reminiscent of Leibniz’ idea that the space-time world is built up from spaceless and timeless action 
centers called “monads.” 
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 Citing Hestenes and others, Huping Hu and Maoxin Wu(33) venture considerably 
further in arguing for the fundamental role played by spin in physics and beyond. Their 
basic proposition is well summarized in the title of their article: “Spin as Primordial Self-
Referential Process Driving Quantum Mechanics, Spacetime Dynamics and 
Consciousness.” Hu and Wu thus do not limit themselves to the claim that spin is the 
source of physics. Primordial spin is “protopsychic” (p. 45) as well as protophysical; it is 
“the seat of consciousness and the linchpin between mind and brain” (p. 43). Or we may 
say that spin is psychophysical or sub-objective, not just an objective event taking place 
in physical space or a subjective happening enclosed within the psyche. Moreover, Hu 
and Wu, in portraying the self-referential nature of spin, come close to recognizing its 
Kleinian character. Associating spin with the particle self-interaction of which Hestenes 
speaks, they liken it to the recursive “strange loops” described by Douglas Hofstadter. 
Here there is “an interaction between levels in which the top level reaches back down 
towards the bottom level influencing it, while at the same time being itself determined by 
the bottom level” (p. 45). What we find when we turn to Hofstadter himself is that the 
“strange loop” may be related to the Klein bottle(34) (p. 691). Evidently then, quantized 
microphysical process is rooted in Kleinian spatio-sub-objectivity. 
 
6. PHENOMENOLOGICAL STRING THEORY AND QUANTUM 
GRAVITY 
 
6.1. The Depth-Dimensional “String Quartet” 
 
Recall the apparent self-contradiction underlying string theory discussed in Section 2: 
Planck-scaled strings are implicitly both indivisible and spatially extended, thus divisible; 
in effect, they are both subject and object. Yet an unacceptable contradiction when 
considered from the trichotomizing perspective of classical thinking can become a fact of 
dialectical process when grasped phenomenologically. If we take the vibratory pattern of 
the fundamental strings as essentially Kleinian in nature—with Kleinian spin not 
objectified but understood in its phenomenological depth—string theory can gain greater 
coherence. In fact, by reformulating the theory in the context of topological 
phenomenology, not only can the theory’s central contradiction be resolved, but, also, its 
current inconclusiveness can be addressed. As noted in Section 1, the quantum 
gravitational equations of string theory lead to a vast multiplicity of possible solutions 
with no guiding principle by means of which the field can be narrowed. What I 
demonstrate elsewhere(4) is that string theory can be cast in a phenomenological form that 
provides a detailed and definitive (albeit qualitative) account of quantum gravity, one that 
unambiguously yields the fundamental particles of the standard model. In this 
introductory paper, I will take the liberty of limiting myself to a summary of these 
findings. 
 
In his further exploration of the hypernumber ε, Musès indicated a “higher epsilon-
algebra” wherein “√εn involves in, the subscripts of course referring to the (n + 1)th 
dimension since i≡i1 already refers to D2”(35) (p. 42). Bearing in mind the intimate 
relationship between ε and the Klein bottle, can Musès’ implication of a dimensional 
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hierarchy of hypernumber values be given topo-phenomenological expression? The Klein 
bottle does lend itself to such a generalization. 

Mathematicians have investigated the transformations that result from bisecting 
topological surfaces. If the Klein bottle is bisected, cut down the middle, it will fall into a 
pair of oppositely-oriented Moebius strips. Next, bisecting the one-sided Moebius strip, a 
two-sided lemniscatory surface will be produced, its sides being related 
enantiomorphically (i.e., as mirror opposites). Finally, cutting the lemniscate down the 
middle yields interlocking lemniscates. The transformation brought about by this 
bisection is clearly the last one of any significance, since additional bisections—being 
bisections of lemniscates, can only produce the same results: interlocking lemniscates. 
The bisection series is completed then when we obtain interlocking lemniscates, a 
structure we shall designate the sub-lemniscate. By thus experimenting with the bisection 
of the Klein bottle, we discover a nested family of four topological structures. 

Of course, in such a bisection experiment, we work with a tangible model of the 
Klein bottle, implicitly taking it as but an object in space. Operating in this fashion, the 
topological structures unfolded via bisection all manifest as two-dimensional surfaces. 
The bisection series thus gives no direct evidence of the hierarchy of differently 
dimensioned ε-like spin structures intimated by Musès. Yet we do know that there is a 
dimensional difference between Kleinian and Moebial structures. We are aware that, 
whereas an imperfect model of the Klein bottle can be constructed in three-dimensional 
space, a properly formed bottle would require an “added” dimension to fill its hole. The 
dimension in question is no transcendent “fourth” dimension but the dimension of depth 
that completes the Klein bottle as a spatio-sub-objective lifeworld. Unlike the Klein 
bottle, the Moebius surface can successfully be assembled as an object in three-
dimensional space. Rucker’s thought experiment(26) has told us that it would be in two-
dimensional space that the Moebius could not be properly put together without producing 
a hole. Evidently then, in the two-dimensional milieu the Moebius would play the same 
role as played by the Klein bottle in three-dimensional space. What this suggests is that—
even though the Moebius appears as but an object in space to the three-dimensional 
observer, in its own two-dimensional sphere it would function as a depth dimension, as a 
spatio-sub-objective lifeworld unto itself. Similar conclusions can be reached about the 
other two members of the bisection series: the lemniscate would constitute the one-
dimensional lifeworld and the sub-lemniscate the zero-dimensional lifeworld. It is this 
account of several different topodimensional lifeworlds nested within each other that is 
consistent with the hierarchy of ε-like spin structures adumbrated by Musès. 

 
εD0 εD0/εD1 εD0/εD2 εD0/εD3 
εD1/εD0 εD1 εD1/εD2 εD1/εD3 
εD2/εD0 εD2/εD1 εD2 εD2/εD3 
εD3/εD0 εD3/εD1 εD3/εD2 εD3 

 
Table 1.  Interrelational matrix of topodimensional spin structures 

 
Table 1, the topodimensional spin matrix, gives the ε-based counterpart of our 

topological bisection series. The three-dimensional Kleinian spinor is written εD3, with 
lower-dimensional members of the tightly knit spin family designated εD2, εD1, and εD0 
(corresponding to the Moebial, lemniscatory, and sub-lemniscatory circulations, 
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respectively). These terms are arrayed on the principal diagonal of the matrix (the one 
extending from the upper left-hand corner to the lower right). The interrelationships 
among the four principal matrix elements, taken two at a time, are reflected in the 
elements appearing off the main diagonal. We may better understand the role of the off-
diagonal terms by employing a musical analogy. 

Generally speaking, Table 1 unpacks the dialectical structure of topodimensional 
interrelations. Regarding topodimensional action as inherently vibratory in nature, we 
note the similarity of this table to the old Pythagorean table (Table 2). 
 

1/1 1/2 1/3 1/4 

2/1 2/2 2/3 2/4 

3/1 3/2 3/3 3/4 

4/1 4/2 4/3 4/4 

 
               Table 2.  Section of the Pythagorean table 

 
The Pythagorean table is usually portrayed as an indefinitely expanding series of 

musical intervals. What is shown in the limited section of the table that I have selected 
for illustrative purposes is a set of relationships that essentially corresponds to our 
topodimensional action matrix: there is a principal diagonal that contains a series of 
fundamental vibrations or tones, and these four principal intervals are coupled to each 
other two at a time by six pairs of overtone-undertone intervals related to each other in 
the mirror-opposed fashion of enantiomorphs. (The overtone ratios are the >1 values 
extending below the fundamental tones, whereas the undertone ratios are the <1 values 
appearing to the right of the fundamentals.) 

Consider in Table 1 the two principal “tones” of highest dimensionality: εD2 and 
εD3. These matrix elements are linked by the “overtone” and “undertone” given in the two 
corresponding non-principal cells, εD3/εD2 and εD2/εD3 (respectively). The 
enantiomorphically-related coupling cells in question are the depth-dimensional 
counterparts of the concretely observable, oppositely oriented Moebius strips which, 
when glued together, form the Klein bottle. Taken strictly as a principal matrix element, 
the depth-dimensional Moebius vibration is the spin structure that constitutes the two-
dimensional lifeworld (εD2). But when we shift our view of the Moebius, consider it in 
relation to higher, Kleinian dimensionality, a kind of “doubling” takes place in which the 
εD2 singular Moebius spin structure becomes a pair of asymmetric, mirrored opposed 
twins, εD3/εD2 and εD2/εD3. It is through the fusion of these dimensional enantiomorphs 
that Kleinian dimensionality is crystallized. Since the Table-1 matrix indicates that all 
four principal dimensionalities or fundamental tones are interrelated by accompanying 
off-diagonal overtone-undertone pairs, we can draw the general conclusion that higher 
dimensions emerge through processes of enantiomorphic fusion (this is fully detailed in 
Ref. 4). 
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The process of dimensional generation can be clarified in broad terms by relating 
it to a reverse movement through the bisection series wherein topological structures are 
not divided but glued together. To begin, we imagine the fusion of interlocking 
lemniscates that yields the single lemniscate. This corresponds to the generation of the 
one-dimensional lifeworld (εD1). Next, we picture the enantiomorphically-related sides of 
the two-sided lemniscate merging to form the one-sided Moebius structure, this being 
associated with the genesis of the two-dimensional lifeworld (εD2). Finally, we imagine 
Moebius enantiomorphs fusing to produce the Klein bottle, which corresponds to the 
evolution of our three-dimensional lifeworld (εD3). With each fusion, a lower-
dimensional lifeworld is introjected by a higher-dimensional one, incorporated in such a 
way that the lower dimension is concealed. In the end, we have three lower-dimensional 
vibratory structures concealed within the three-dimensional Kleinian vibration, much as 
lower dimensions are hidden by becoming “curled up” within visible 3 + 1-dimensional 
space-time in the conventional string theoretic account of dimensional cosmogony. It 
turns out, in fact, that the phenomenological approach arrives at the same total number of 
dimensions as does the conventional theory. To see how this is so, let us consider more 
closely the dimension of time. 

 
In the course of questioning contemporary efforts to arrive at a workable theory of 
quantum gravity, Lee Smolin made this confession: “there is something basic we 
[physicists] are all missing, some wrong assumption we are all making”(6) (p. 256). 
Smolin goes on to say: 
 

I strongly suspect that the key is time….Time is represented as if it were another 
dimension of space. Motion is frozen, and a whole history of constant motion and 
change is presented to us as something static and unchanging….We have to find a 
way to unfreeze time—to represent time without turning it into space. (pp. 256–
57) 

 
I venture to say that regrounding theoretical physics in phenomenological philosophy has 
the effect of “unfreezing time.” Merleau-Ponty’s depth dimension is not simply a 
dimension of space, nor is it even a domain of space-time, in the Einsteinian sense in 
which time is essentially spatialized. A better term for the lifeworld dimension is “time-
space.” This was Heidegger’s name for the dynamic order of being integrating time and 
space in such a way that the rule of fixed spatiality is surpassed in favor of a more 
authentic, “unfrozen” temporality (what Heidegger also called “true time”).(36) The close 
kinship of time-space with depth is elaborated elsewhere (Ref. 4, pp. 52–53). Here I only 
want to emphasize that, once the world is brought to life by recognizing the dialectical 
process that underlies it, this lifeworld is no longer mistaken as constituted by static 
spatiality but is indeed understood as a time-space. Perhaps we might say then that the 
Kleinian lifeworld is not a three- or four-dimensional space nor a 3 + 1-dimensional 
space-time, but a 1+ 3-dimensional time-space. And nested within this lifeworld are three 
others: the 1 + 2-dimensional Moebial time-space, the 1 + 1-dimensional lemniscatory 
time-space, and the 1 + 0-dimensional sub-lemniscatory time-space. Such an account, 
however, would not be entirely accurate. 
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The time and space of the lifeworld are blended more intimately than in the 
classical continuum, making it problematic to view their relationship as simply additive 
(1 + 0, 1 + 1, etc.). Yet, in Section 3.2, we did find that classical space-time originates 
from the more primordial spatiotemporality of the depth dimension (what Merleau-Ponty 
regarded as “natal space and matrix of every other existing space”). So while it may not 
be much more accurate to describe the Kleinian lifeworld as “1 + 3-dimensional” than as 
“3 + 1-dimensional,” we can and should say that 3 + 1-dimensional space-time is 
projected from primordial Kleinian time-space (εD3). The other three space-time regimes 
would similarly be projected from their three time-space counterparts (Moebial, 
lemniscatory, and sub-lemniscatory). A simple summation of projected space-time 
dimensions gives us a total of ten, with the six lower dimensions—(2 + 1) + (1 + 1) + (0 
+ 1)—being hidden like Russian dolls within the larger 3 + 1-dimensional space-time. 
This picture of overall ten-dimensionality, with six dimensions concealed, accords with 
the basic account provided by string theory. Thus we may say that our four temporo-
spatial spinors spin out the ten4 space-time dimensions of string theory. 

By way of underscoring the inherent musicality of this depth-dimensional “string 
quartet,” I end this section with a quote. According to Brian Greene: 

 
Music has long…provided the metaphors of choice for those puzzling over 
questions of cosmic concern. From the ancient Pythagorean “music of the 
spheres” to the “harmonies of nature” that have guided inquiry through the ages, 
we have collectively sought the song of nature in the gentle wanderings of 
celestial bodies and the riotous fulminations of subatomic particles. With the 
discovery of superstring theory, musical metaphors take on a startling reality, for 
the theory suggests that the microscopic landscape is suffused with tiny strings 
whose vibrational patterns orchestrate the evolution of the cosmos.(8) (p. 135) 
 

6.2. The Music of Evolving Nature 
 
String theorists have approached cosmogony by adopting the concept of symmetry 
breaking. According to the prevailing view, the four forces of nature are conceived as 
vibrating strings that initially existed in a purely symmetric ten-dimensional space scaled 
around the Planck length. Subsequently, the perfect primordial symmetry was 
spontaneously broken by a dimensional bifurcation in which four of the original 
dimensions expanded to produce the visible universe we know today, with the other 
dimensions remaining hidden. Coupled with this was the breaking of force-field 
symmetry to create the appearance of irreconcilable differences among the forces. 

However, while the foregoing account of cosmogony incorporates both 
dimensional and force-field symmetry breaking, the two are not precisely aligned with 
each other in the theoretical reckoning. This reflects the fact that contemporary theorists 
have been unable to articulate a detailed geometric rendering of cosmic evolution. Heinz 
Pagels begins his discussion of the extra-dimensional (Kaluza-Klein) interpretation of 
cosmogony on an optimistic note: “Remarkably, the local gauge symmetries are precisely 

                                                
4 With the extension of string theory known as M-theory, eleven dimensions are actually entailed, though 
the eleventh dimension is not like the other ten. This “extra” dimension in fact may be interpreted as 
intimating the depth dimension. See Ref. 4, Chapter 8. 
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the symmetries of the compact higher-dimensional space. Because of this mathematical 
fact, all the gauge theories of Yang-Mills fields can be interpreted purely geometrically in 
terms of such compact higher-dimensional spaces”(37) (pp. 327–28). And yet, for the 
geometric program fully to be realized, the physical events described in the standard and 
inflationary models of cosmic development would need to be specifically expressible as 
dimensional events. “Unfortunately,” admits Pagels, “no one has yet been able to find a 
realistic Kaluza-Klein theory which yields the standard model” (p. 328). In the string-
theoretic application of Kaluza-Klein theory, one obvious reason for this limitation is the 
absence of a conceptual principle that could guide the analyst to unambiguous solutions 
of the ten-dimensional general equations (see Section 1), solutions specifying the exact 
shapes of the hidden dimensions that would correspond to the physical facts of the 
standard model. Of course, if the prevailing theory cannot tell us what the dimensional 
structures are that correspond to physical reality, it can hardly inform us on how these 
dimensions develop. In point of fact, there is really no positive feature intrinsic to the 
theory that provides for the evolution of dimensions. As far as I can tell, the only reason 
dimensional bifurcation is assumed to have taken place at all is that theorists must 
somehow account for the present inability to observe six of the ten dimensions needed for 
a consistent rendering of quantum gravity (one that avoids untenable probability values). 
 Smolin seems to put his finger on the underlying problem in calling attention to 
the “wrong assumption” physicists “are all making” when they present the “whole history 
of constant motion and change…as something static and unchanging”(6) (pp. 256–57). 
When authentic change is thus denied, it is not surprising that no natural, parsimonious 
way of accounting for cosmogony is forthcoming. Conventional string theory well 
exemplifies this adherence to the classical intuition of changelessness in the primacy it 
gives to the notion of symmetry. It is in assuming an initial state of “perfect symmetry” 
that theorists must resort to the artifice of “spontaneous symmetry breaking,” an alleged 
event that—far from being a natural consequence of the purely symmetric theory—is 
gratuitously invoked without a compelling explanation of its basis. 

Phenomenological string theory affords a way out of the impasse. Here time is 
“unfrozen.” Instead of artificially appending asymmetry to a primordially perfect 
symmetry, a dialectic of symmetry and asymmetry is offered that permits an unequivocal, 
intrinsically meaningful account of the evolving forces of nature. This principle of 
“synsymmetry”(3, 4, 22) is implicit in the topological bisection series and its associated 
topodimensional spin matrix (Table 1). 

For a simple illustration, consider the Moebius strip. It arises from the fusion of 
mirror-opposed, asymmetrically-related sides of the lemniscate. We can say that, through 
this union of opposites, the asymmetry of lemniscatory sides is rendered symmetric. 
However, while the Moebius can be deemed symmetric vis-à-vis the fused lemniscatory 
sides that constitute it, at the same time it is itself a member of an enantiomorphic pair 
whose own fusion produces the Klein bottle. Generally speaking, we may conclude that 
the members of our topodimensional family are neither simply asymmetric nor simply 
symmetric, but synsymmetric: a given member combines symmetry and asymmetry in 
such a way that it is symmetric in relation to its lower-dimensional counterpart and 
asymmetric in relation to its higher one (the sub-lemniscate is an exception to this, since 
it has no lower-dimensional counterpart). I propose that the synsymmetry concept, 
viewed dynamically in terms of enantiomorphic fusion events, constitutes a guiding 
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principle for cosmogony. The forces and particles of nature evolve by a general process 
wherein asymmetric dimensional enantiomorphs fuse to create a dimensional symmetry 
that at once inherently gives way to new asymmetry. To keep this article at a manageable 
length, I will restrict myself to a synoptic sketch of topo-phenomenological cosmogony 
(see Ref. 4 for more detail). 
 
What I am suggesting is that a full account of the elementary forces of string theory may 
be afforded by embedding the theory in the matrix of primordial spin structures given in 
Table 1. The matrix in question constitutes a special application of the Clifford-based 
hypernumber idea that provides a highly specific rendition of primordial spin action, a 
topodimensional array of four fundamental spinors (displayed on the principal diagonal 
of the matrix) that can be directly associated with the four types of gauge bosons found in 
nature. The gauge-boson correlates of Table 1 are given in Table 3. What is the basis of 
these correlations? 

 
G G/g G/(W, Z) G/γ 

g/G g g/(W, Z) g/γ 
(W, Z)/G (W, Z)/g W, Z (W, Z)/γ 
γ/G γ/g γ/(W, Z) γ 

 
Table 3. Spin matrix of gauge bosons. G is the graviton; g is the strong gauge boson; W,Z is the weak 

gauge boson particle pair; and γ is the photon 
 

We know that Table 1 signifies a process of generation in which higher 
topological dimensions evolve from lower ones. The facts of physical evolution lend 
themselves to straightforward, one-to-one correlation with topogenetic process. The first 
force particle to “freeze out” of the Big Bang’s hot primordial soup is the hypothesized 
graviton, G. The graviton of Table 3 is associated with εD0, the zero-dimensional sub-
lemniscatory action of Table 1, which can be written εD0(/2) to give expression to 
subatomic particle spin; thus, G ≡ εD0(/2). Next to separate itself from the primordial 
chaos is the strong gauge boson, g, and we relate it to εD1 lemniscatory action, writing g ≡ 
εD1(/2). Then the weak force emerges, given by the boson pair W and Z, which we 
identify with εD2(/2). When the three orders of lower-dimensional gauge boson have 
“frozen out,” what remains is γ, the photon, topodimensionally expressed as εD3(/2). 
 Having focused our attention on the principal terms or “fundamental tones” of our 
matrices, let us now inquire into the physical significance of the “overtone-undertone” 
couplings appearing off the principal diagonals. In Table 1, these are the topodimensional 
enantiomorphs whose synsymmetric fusions drive the process of dimensional generation. 
The overtone-undertone couplings appear in Table 3 as enantiomorphically-related boson 
ratios. It is from their interactions that the primary gauge bosons emerge. Since nature’s 
force fields evolve by a process in which the universe expands, boson-ratio fusion may be 
regarded as impelling said expansion. I conjecture accordingly that these primordial 
boson ratio interactions, which are not themselves directly observable, comprise the 
mysterious “dark energy” said to fuel the accelerated expansion of the cosmos. 
 In phenomenological string theory, boson-ratio interaction not only accounts for 
the generation of the four kinds of gauge bosons, but for the production of the 12 
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fermions of the standard model as well. The six pairs of ratios involved in distilling the 
bosons also interact to yield the six pairs of fermions (three lepton pairs and three quark 
pairs). Geometrically speaking, the fermions function as “dimensional bounding 
elements,” local features of global bosonic dimensionality, with local and global aspects 
intimately interwoven (in keeping with Merleau-Ponty’s notion of the depth dimension as 
a “global locality”; see Section 3). Needless to say, this requires clarification, but I do not 
have the space to elaborate further on it here (see Ref. 4). I will only suggest that the 
purely geometric account of boson-fermion interrelatedness I am proposing obviates the 
need for the unparsimonious and unsubstantiated postulation of particle “super-partners” 
given in the currently influential notion of “supersymmetry.” 
 
EPISTEMOLOGICAL POSTSCRIPT: TOWARD A NEW KIND OF 
CLARITY 
 
In the preceding pages, I have attempted to demonstrate the advantages of grounding 
quantum gravity in phenomenological philosophy. Of significant benefit is the provision 
of a detailed and definitive account of dimensional generation, one that brings string 
theory down to earth by aligning it unambiguously with the qualitative facts of the 
standard model of particle physics. Another unique feature of the new approach is its 
clarification of dimensions with respect to whether they are space-like or time-like. 
Whereas conventional string/Kaluza-Klein theory is vague on this score, the 
phenomenological account identifies exactly four orders of spatiotemporality containing 
a total of six space-like dimensions and four time-like ones. Most importantly perhaps, 
phenomenological string theory meets Smolin’s requirement of unfreezing time. 
 However, comparing conventional and phenomenological approaches to quantum 
gravity has its pitfalls. It is easy to underestimate the magnitude of the change that is 
entailed in making the transition from one to the other. Does the phenomenological 
version of string theory really clarify the conventional rendition by providing more detail 
on dimensional patterning, as I have claimed? In general, I believe the answer is yes, but 
it might actually be more accurate to say that phenomenology offers a new kind of clarity, 
one in which the idea of “detail” has a rather different meaning. 
 Assuming the conventional posture of mathematical physics, we begin from an 
intuition of abstract universality, viz. the symmetric forms that constitute the general 
equations. (“Physicists…believe [their] theories are on the right track because, in some 
hard-to-describe way, they feel right, and ideas of symmetry are essential to this feeling”; 
Ref. 8, p. 225). We then look to solve those equations so as to determine the particular 
structures that can be put into correspondence with physical reality. However, the general 
and particular levels of the theory are separated from each other in such a way that the 
sense of intuitive confidence felt about the abstract symmetries does not carry over into 
the detailed solutions of the equations. That is why conventional string theory has had 
such difficulty determining which of its many possible topological solutions is the right 
solution. Physicists have had to play the elaborate guessing games we have discussed 
because their mathematical formulations afford no intuitive guidance as to the right shape 
of the hidden dimensions. The “devil” surely has been in the details. 
 In the contrasting phenomenological approach, the generalities intuited are 
inseparable from the details, since these general structures are not abstractions that must 
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be concretized in a subsequent step but are “general things”(12) (p. 139), universals that 
themselves are concrete. So, when I say that the phenomenological version of Kaluza-
Klein theory gives more detail on dimensional patterning than the conventional version, I 
am not speaking of “details” in the usual sense of particular features or instances of a 
pattern that itself is more general, the division of the particular and general being tacitly 
assumed. Rather, I am referring to a pattern whose details are an integral part of its very 
generality. This surely makes for a different kind of clarity than is customarily sought. I 
submit, however, that, in confronting the profound challenge of quantum gravity, the 
customary manner of clarification is simply not equal to the task. It is here that 
phenomenology can play its crucial role. 
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